The generator matrix

 1  0  1  1  1 X+2  1  1 2X  1  1 3X+2  1  2  1  1  X  1  1  0  1 3X  1  1  1  1 2X+2  1  1 X+2  1  1 2X+2  1  1 3X  1  1 2X+2  1  1  X  1  1 3X+2  0  1  1  1  1 3X+2  1  1  1  1  1  1 2X+2 3X+2 2X  X  0  2  X  0 X+2 2X+2 3X  0 3X 2X+2 X+2  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1 2X  2  1  1  1  1  1  2  1  1  1
 0  1 X+1 3X+2 2X+3  1  X X+1  1 2X+2  3  1 X+3  1 X+2  1  1 3X X+1  1 2X+1  1 2X 3X+2  2 3X+3  1 2X  3  1 3X+3  X  1  2 2X+1  1 3X+2 3X+1  1 2X+2 2X+3  1  X 3X+3  1  1  0  1  0 2X+3  1 2X+2 3X X+2 X+1 2X+1 X+3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X+3 3X+1 3X+1 2X+3 3X+1  3 3X+3  3  1 X+3 3X 2X+1 2X+1  0  X  X  1 X+2 2X+2 2X+2 2X 2X+2  1 X+1 3X  0
 0  0  2  2 2X+2  0 2X+2 2X  2  0 2X  2  2  2 2X 2X+2  2 2X  0 2X  0 2X  2 2X+2 2X+2  0  0 2X+2  0 2X 2X  2 2X  2 2X  0  0 2X+2 2X+2 2X  2 2X+2  0 2X+2 2X+2 2X+2 2X  2 2X+2 2X 2X 2X+2 2X  0  0  2  2  0  2 2X+2 2X 2X  2  2  0  0 2X+2 2X+2  2  0 2X 2X+2  0 2X+2  2 2X 2X+2 2X+2  0  0  2 2X+2 2X  2 2X 2X+2  0  2  0 2X 2X  0  2 2X 2X  0 2X+2 2X+2 2X
 0  0  0 2X 2X 2X  0 2X  0 2X  0 2X 2X 2X  0  0  0 2X 2X  0  0 2X  0 2X  0  0 2X 2X 2X  0  0  0 2X 2X 2X  0  0  0 2X 2X 2X  0 2X 2X 2X  0  0  0  0 2X 2X 2X  0 2X  0 2X  0  0  0 2X  0 2X  0 2X 2X  0  0 2X 2X 2X  0  0 2X  0 2X  0  0 2X  0 2X  0 2X 2X 2X  0 2X 2X 2X 2X 2X 2X  0 2X 2X  0 2X 2X 2X 2X

generates a code of length 99 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 95.

Homogenous weight enumerator: w(x)=1x^0+184x^95+223x^96+128x^97+367x^98+416x^99+216x^100+112x^101+125x^102+168x^103+87x^104+16x^105+1x^106+1x^110+2x^126+1x^136

The gray image is a code over GF(2) with n=792, k=11 and d=380.
This code was found by Heurico 1.16 in 1.28 seconds.